156 research outputs found

    MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation

    Get PDF
    There is increasing evidence of crosstalk between epigenetic modifications such as histone and DNA methylation, recognized by HP1 and methyl CpG-binding proteins, respectively. We have previously shown that the level of methyl CpG-binding proteins increased dramatically during myogenesis leading to large-scale heterochromatin reorganization. In this work, we show that the level of HP1 isoforms did not change significantly throughout myogenic differentiation but their localization did. In particular, HP1 relocalization to heterochromatin correlated with MeCP2 presence. Using co-immunoprecipitation assays, we found that these heterochromatic factors interact in vivo via the chromo shadow domain of HP1 and the first 55 amino acids of MeCP2. We propose that this dynamic interaction of HP1 and MeCP2 increases their concentration at heterochromatin linking two major gene silencing pathways to stabilize transcriptional repression during differentiation

    Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop

    Get PDF
    Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration. Excision of Cd44 in Cd44fl/fl^{fl/fl};VillinCreERT2^{T2} mice reduced Wnt target gene expression in intestinal crypts and affected stem cell functionality in organoids. Although the integrity of the intestinal epithelium was conserved in mice lacking CD44, they were hypersensitive to dextran sulfate sodium, and showed more severe inflammation and delayed regeneration. We localized the molecular function of CD44 at the Wnt signalosome, and identified novel DVL/CD44 and AXIN/CD44 complexes. CD44 thus promotes optimal Wnt signaling during intestinal regeneration

    Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling

    Get PDF
    The target of rapamycin complex 1 (TORC1) integrates various hormonal and nutrient signals to regulate cell growth, proliferation, and differentiation. Amino acid-dependent activation of TORC1 is mediated via the yeast EGO complex (EGOC) consisting of Gtr1, Gtr2, Ego1, and Ego3. Here, we identify the previously uncharacterized Ycr075w-a/Ego2 protein as an additional EGOC component that is required for the integrity and localization of the heterodimeric Gtr1-Gtr2 GTPases, equivalent to mammalian Rag GTPases. We also report the crystal structure of the Ego1-Ego2-Ego3 ternary complex (EGO-TC) at 2.4 Å resolution, in which Ego2 and Ego3 form a heterodimer flanked along one side by Ego1. Structural data also reveal the structural conservation of protein components between the yeast EGO-TC and the human Ragulator, which acts as a GEF for Rag GTPases. Interestingly, however, artificial tethering of Gtr1-Gtr2 to the vacuolar membrane is sufficient to activate TORC1 in response to amino acids even in the absence of the EGO-TC. Our structural and functional data therefore support a model in which the EGO-TC acts as a scaffold for Rag GTPases in TORC1 signaling

    Strategic and practical guidelines for successful structured illumination microscopy

    Get PDF
    Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d

    CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters

    Get PDF
    DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to ‘read’ DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing

    Direct Injection of Functional Single-Domain Antibodies from E. coli into Human Cells

    Get PDF
    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 105–106 molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes

    FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    Get PDF
    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

    Conformational Targeting of Fibrillar Polyglutamine Proteins in Live Cells Escalates Aggregation and Cytotoxicity

    Get PDF
    Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases
    corecore